A New Multicomponent Diffusion Formulation for the Finite-volume Method: Application to Convective Droplet Combustion

نویسندگان

  • Daniel N. Pope
  • George Gogos
چکیده

A new multicomponent formulation, appropriate for use with the finite-volume method, has been developed to describe mass diffusion velocities accurately. The new formulation is applied in a quasi-steady numerical model for n-heptane fuel droplet combustion in a forced-convection environment. Results obtained using the complete formulation are compared to the results obtained under various assumptions. Using a single binary diffusion coefficient produces results for extinction velocity, maximum temperature, flame dimensions , evaporation constant, and drag coefficient that are significantly different from the results obtained using the complete formulation. Neglecting thermal diffusion (Soret effect) causes only minor changes (less than 2%).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pope, D. and Gogos, G. "Numerical Simulation of Fuel Droplet Extinction Due to Forced Convection," Combustion and Flame, 142:89-106 (2005)

The extinction of an envelope flame at the forward stagnation point of a liquid fuel droplet due to forced convection is numerically investigated. The droplet is oxidizing within an air stream at atmospheric pressure. Combustion is modeled using finite-rate chemical kinetics and a one-step overall reaction. The gas-phase solution is obtained using the quasi-steady equations of mass, momentum, s...

متن کامل

Pope, D.N., Howard, D., Lu, K. and Gogos, G. ╜Combustion of Moving Droplets and Suspended Droplets: Transient Numerical Results,╚ AIAA Journal of Thermophysics and Heat Transfer, 19:273-281 (2005)

A numerical investigation of unsteady liquid fuel droplet combustion with droplet heating and internal circulation under forced convection is presented. The droplet is burning within an airstream at atmospheric pressure and under zero-gravity conditions. Combustion is modeled using finite rate kinetics and a one-step overall reaction. The numerical model includes a new multicomponent formulatio...

متن کامل

Numerical Study of Entropy Generation for Natural Convection in Cylindrical Cavities

In this paper, an enhanced computational code was developed using finite-volume method for solving the incompressible natural convection flow within the cylindrical cavities. Grids were generated by an easy method with a view to computer program providing. An explicit integration algorithm was applied to find the steady state condition. Also instead of the conventional algorithms of SIMPLE, SIM...

متن کامل

Finite Volume Solution of a Cylinder in Cross Flow with Heat Transfer

A finite-volume model has been developed to study incompressible forced flow heat transfer of air over a circular cylinder in cross flow. An artificial compressibility technique is applied to couple the continuity to the momentum equations. The proposed explicit finite-volume method (FVM) uses a novel discretization in time and space. The governing equations are solved by time-marching using a ...

متن کامل

Numerical Methods for Solving Convection-Diffusion Problems

Convection-diffusion equations provide the basis for describing heat and mass transfer phenomena as well as processes of continuum mechanics. To handle flows in porous media, the fundamental issue is to model correctly the convective transport of individual phases. Moreover, for compressible media, the pressure equation itself is just a time-dependent convection-diffusion equation. For differen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013